Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587800

RESUMEN

Recurrent epiphytotics of X-disease, caused by 'Candidatus Phytoplasma pruni', have inflicted significant losses on commercial cherry and peach production across North America in the last century. During this period, there have been multiple studies reporting different disease phenotypes, and more recently, identifying different strains through sequencing core genes, but the symptoms have not, to date, been linked with genotype. Therefore, in this study we collected and assessed differing disease phenotypes from multiple U.S. states and conducted multi-locus sequence analysis on these strains. We identified a total of five lineages associated with the induction of X-disease on commercial Prunus species and two lineages that were associated with wild P. virginiana. Despite a century of interstate plant movement, there were regional trends in terms of lineages present, and lineage-specific symptoms were observed on P. avium, P. cerasus, and P. virginiana, but not on P. persica. Cumulatively, these data have allowed us to define 'true' X-disease-inducing strains of concern to the stone fruit industry across North America, as well as potential sources of infection that exist in the extra-orchard environment.

2.
Plant Dis ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616391

RESUMEN

California leads the United States in peach (Prunus persica L.) production, with approximately 505,000 tons produced in 2021 and valued at $378.3 million (California Agriculture Statistics Review, 2021-2022). During the spring and summer of 2023, twig and branch dieback were observed in three peach orchards (cvs. Late Ross and Starn) in San Joaquin County, California. Wood cankers and discoloration also occurred in branches, generally initiating at pruning wounds. Approximately 8 symptomatic twigs or branches per orchard were collected to proceed with the isolation of necrotic tissues on acidified potato dextrose agar (APDA). Isolations consistently yielded colonies of the fungal pathogen Calosphaeria pulchella (Pers. : Fr.) J. Schröt. (Réblová et al. 2004; Trouillas et al. 2012). Pure cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. Colonies on APDA grew dark pink to red or purple in their center, with a white margin. Conidiogenesis was phialidic, producing round conidial masses at the tip of phialides. Conidia were produced abundantly on APDA, and were hyaline, allantoid to oblong-ellipsoidal, 4 to 5.5 (7) × 1.2 to 2.3 µm (n = 60). Two representative isolates (SJC-62 and SJC-64) were selected for genomic DNA extraction and sequencing of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers and the beta-tubulin (TUB2) gene region using primers Bt2a and Bt2b. Consensus sequences of the two genes for the two isolates (ITS: PP063990, PP063991; TUB2: PP068303, PP068304) were compared to reference sequences (Réblová et al. 2015; Trouillas et al. 2012) using BLAST analysis. The ITS sequences of SJC-62 and SJC-64 were 99.8 and 99.5% identical to that of C. pulchella ex-type strain CBS 115999 (NR145357) and reference strain SS07 (HM237297); the TUB2 sequences were at least 98.5% identical to that of C. pulchella CBS 115999 (KT716476). Pathogenicity tests were conducted in 2- to 3-year-old healthy branches on 7-year-old peach trees, cvs. Loadel, Late Ross and Starn using the two fungal isolates and a control treatment (1 branch per treatment and 3 branches per tree) on each of 8-tree replicates. Branches were inoculated in June 2023 following wounding with a 5 mm cork borer to remove the bark and placing an agar plug from the margin of 10-day-old colonies on APDA directly into the fresh wound. Sterile agar plugs were used as controls. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to retain moisture. The experiment was completed twice. After four months, cankers and vascular discolorations developed around the inoculation sites. Length of vascular discoloration in inoculated branches averaged 72, 75, and 79 mm, for the Loadel, Starn, and Late Ross cvs., respectively. Calosphaeria pulchella was re-isolated from inoculated branches at 80 to 100% recovery rate, thus fulfilling Koch's postulates. The average length of vascular discoloration in the control was 13.5 mm and no fungi were recovered from control branches. Calosphaeria canker caused by C. pulchella is a global disease of sweet cherry. Recently, it was reported to cause cankers in peach trees in Chile (Grinbergs et al. 2023). To our knowledge, this is the first report of C. pulchella causing cankers and twig dieback of peach trees in the United States. These findings improve our knowledge of the etiology of canker diseases affecting peach trees and is critical for the development of effective disease management strategies.

3.
Plant Dis ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240713

RESUMEN

Persimmon is a relatively new crop to California agriculture. Asian persimmons (Diospyros kaki) are the dominant species commercially cultivated in the United States, primarily grown in California, covering approximately 1,153 ha of bearing trees. In the growing seasons of 2020 and 2021, unusual shoot blight and branch cankers were observed in several persimmon orchards in San Joaquin and Solano counties in California. The most prevalent symptoms were well-defined black discoloration in the cambium and streaking in the vascular tissues of green shoots. On woody branches and old pruning wounds, symptoms manifested as black wedge-shaped cankers. Isolations from affected tissues revealed the occurrence of Diaporthe species, including D. chamaeropis, D. foeniculina, and an undescribed Diaporthe sp., as the most frequent isolated pathogens, followed by Eutypella citricola, and Phaeoacremonium iranianum. The isolates were identified through multi-locus phylogenetic analyses using nucleotide sequences of the rDNA internal transcribed spacer, ß-tubulin, and translation elongation factor 1-alpha genes. To fulfill Koch's postulates, mycelium plugs of the various fungal species identified were introduced in 2-year-old branches of mature persimmon trees after making wounds using a corkborer in the field conditions. Results showed that, Diaporthe spp., E. citricola, and P. iranianum are the main causal agents of branch canker and shoot dieback of persimmon trees in California, with Diaporthe spp. being the most frequently isolated pathogen.

4.
Plant Dis ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173260

RESUMEN

The major fungal canker pathogens causing branch dieback of sweet cherry trees in California include Calosphaeria pulchella, Cytospora sorbicola and Eutypa lata. These pathogens have long been known to infect cherry trees mainly through pruning wounds. However, recent field observations revealed numerous shoots and fruiting spurs exhibiting dieback symptoms with no apparent pruning wounds or mechanical injuries. Accordingly, this study was conducted to assess the incidence of the three pathogens in symptomatic terminal shoots and dying fruiting spurs, in addition to the wood below pruning wounds in branches. Surveys were conducted in five sweet cherry orchards across three counties in California. We also investigated the possibility that leaf scars, bud scars, and wounds resulting from fruit picking, could serve as infection courts for Cal. pulchella, Cyt. sorbicola and E. lata by means of artificial inoculations in the field. Orchard surveys revealed that Cal. pulchella had the highest pathogen incidence below pruning wounds in branch samples, followed by Cyt. sorbicola and E. lata. Among terminal shoots with dieback symptoms and dying fruiting spurs, Cyt. sorbicola was the most prevalent, followed by Cal. pulchella. Results from field inoculations indicated that fruit picking wounds could serve as important infection courts for Cal. pulchella, Cyt. sorbicola and E. lata, with average pathogen recovery of 41.5%, 63% and 36.2%, respectively. Results also indicated that leaf and bud scars could serve as an entry site for Cyt. sorbicola, although recovery was relatively low. The present study is the first to identify harvest-induced wounds on fruiting spurs of sweet cherry as an important infection court of Cal. pulchella, Cyt. sorbicola and E. lata.

5.
Plant Dis ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37227433

RESUMEN

Peaches (Prunus persica L.) are an important crop in the United States with California leading the nation in peach production, with approximately 505,000 tons valued at $378.3 million (USDA National Agricultural Statistics Service, 2021, https://www.nass.usda.gov/). From April to July 2022, symptoms of branch and scaffold canker as well as shoot dieback were observed in three peach (cvs. Loadel, Late Ross and Starn) orchards located in San Joaquin County, California. Samples were collected from about 12 trees for each cultivar. Fast-growing, white, flat colonies were consistently isolated from active cankers on acidified potato dextrose agar (APDA) following the method described by (Lawrence et al. 2017). Pure fungal cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. A total of 22 isolates were obtained. Each fungal isolate was recovered from a single diseased branch (40 to 55% recovery). All isolates in this study shared similar morphological characteristics. Fungal colonies were fast-growing with relatively even but slightly dentate margin, flat with white to off-white mycelium that turned vinaceous buff to pale greyish sepia (Rayner 1970) with age. Black, globose, ostiolated pycnidia, 0.8-(1.3)-2.2 mm diameter, with brownish surface hyphae formed on peach wood embedded in PDA after approximately three weeks and exudated buff-colored mucilage. Pycnidia were both solitary and aggregated and had multiple internal locules sharing invaginated walls. Conidiogenous cells were hyaline, smooth-walled, septate, tapering towards the apex, 13-(18.2)-25.1 × 0.8-(1.3)-1.9 µm (n = 40). Conidia were hyaline, allantoid, smooth, aseptate, 5.5-(6.3)-7.1 × 1.4-(1.9)-2.3 µm (n = 40). Genomic DNA was extracted and sequences of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers, translation elongation factor 1α gene (TEF) using primers EF1-728F/EF1-986R, second largest subunit of RNA polymerase II (RPB2) using primers RPB2-5F2/fRPB2-7cR, and actin gene region (ACT) using primers ACT-512F/ACT-783R were obtained and compared with sequences available in GenBank (Lawrence et al. 2018; Hanifeh et al. 2022). Isolates were identified as Cytospora azerbaijanica following DNA sequencing and morphological identification. Consensus sequences of the four genes of two representative isolates (SJC-66 and SJC-69) were deposited into GenBank database (ITS: OQ060581 and OQ060582; ACT: OQ082292, OQ082295; TEF: OQ082290 and OQ082293; RPB2: OQ082291 and OQ082294). The Basic Local Alignment Search Tool (BLAST) indicated that the sequenced RPB2 genes of isolates (SJC-66 and SJC-69) were at least 99% identical to that of Cytospora sp. strain shd47 (Accession: MW824360) covering at least 85% of the sequences. The actin genes from our isolates were at least 97.85% identical to that of Cytospora sp. strain shd47 (Accession: MZ014513), covering 100% of the sequences. The translation elongation factor gene from isolates (SJC-66 and SJC-69) was at least 96.4% identical to that of Cytospora sp. strain shd166 (Accession: OM372512), covering 100% of the query. Those top hit strains belong to C. azerbaijanica, recently reported by Hanifeh et al. (2022). Pathogenicity tests were performed by inoculating eight wounded, 2- to 3-year-old healthy branches on each of eight 7-year-old peach trees, cvs. Loadel, Late Ross and Starn, using 5-mm-diameter mycelium plugs collected from the margin of an actively growing fungal colony on APDA. Controls were mock-inoculated with sterile agar plugs. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to keep moisture. The experiment was performed twice. After four months, inoculation tests resulted in vascular discoloration (canker) above and below the inoculation sites (average necrosis length of 114.1 mm). Cytospora azerbaijanica was re-isolated from all infected branches (70 to 100% recovery) completing Koch's postulates. Controls remained symptomless and no fungi were isolated from the slightly discolored tissue. Cytospora species are destructive canker and dieback pathogens of numerous woody hosts worldwide. Recently, C. azerbaijanica was reported in causing canker disease of apple trees in Iran (Hanifeh et al. 2022). To our knowledge, this is the first report of C. azerbaijanica causing canker and shoot dieback of peach trees in the United States and worldwide. These findings will aid towards a better understanding of genetic diversity and host range of C. azerbaijanica.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...